Menjaga Keandalan Sistem PLTS dengan Metode Failure Mode Effect Analysis (FMEA)

Main Article Content

Ardian Burhandono
Nazaruddin Sinaga


Intisari— Pada 12 Desember 2015 telah dilaksanakan Confereence Of the Parties 21 (COP) di Paris tujuannya membatasi pemanasan global sampai dengan dibawah 2oC dan lebih baik lagi jika bisa mencapai 1,5oC. Saat ini pemanfaatan energi matahari menjadi energi listrik sangat masif diterapkan dan perkembangan teknologinya juga meningkat pesat. Pemeliharaan yang rutin dan tepat sangat menekan biaya produksi sehingga harga jual listrik menjadi murah. Pada penelitian ini bertujuan untuk mengetahui kerusakan yang banyak terjadi di sistem Pembangkit Listrik Tenaga Surya (PLTS) dan tindakan pencegahan kerusakan serta penanggulangannya. Berdasarkan metode yang tepat akan dihasilkan suatu prioritas perbaikan yang tepat pula. Banyak industri khususnya pembangkit listrik menggunakan metodologi yang disebut Failure Mode and Effects Analysis (FMEA) yang didalamnya terdapat Risk Priority Number (RPN). Didalam RPN berisi beberapa faktor antara lain tingkat keparahan (Severity), peringkat terjadinya kegagalan (Occurrence) dan peringkat mendeteksi terjadinya kegagalan (Detectable). Dengan penyusunan FMEA pada sistem pembangkit listrik tenaga surya akan meningkatkan kehandalan sisitem tersebut sehingga biaya operasional akan lebih murah dan harga jual listriknya akan terjangkau masyarakat.

Abstract— On 12 December 2015 a Conference of the Parties 21 (COP) was held in Paris which aims to limit global warming to below 2 oC and even better if it can reach 1.5 oC. Currently the use of solar energy into electrical energy is very massively applied and technological developments are also increasing rapidly. Routine and proper maintenance greatly reduces production costs so that the selling price of electricity becomes cheap. This study aims to determine the damage that occurs in the Solar Power Generation system (PLTS) and the prevention and control of damage. Based on the right method, an appropriate improvement priority will also be generated.Many industries, especially power plants, use a methodology called Failure Mode and Effects Analysis (FMEA) which includes a Risk Priority Number (RPN). The RPN contains several factors including severity, occurrence of failure (Occurrence) and rating of detecting failure (Detectable). With the preparation of FMEA on the solar power generation system, it will increase the reliability of the system so that operational costs will be cheaper and the selling price of electricity will be affordable by the community.



Download data is not yet available.

Article Details

Author Biographies

Ardian Burhandono, Universitas Diponegoro

Magister Energi, Sekolah Pasca Sarjana, Universitas Diponegoro Jln. Imam Bardjo SH No. 5 Semarang

Nazaruddin Sinaga, Universitas Diponegoro

Magister Energi, Sekolah Pasca Sarjana, Universitas Diponegoro Jln. Imam Bardjo SH No. 5 Semarang


C. Ogbonnaya, C. Abeykoon, A. Nasser, C. S. Ume, U. M. Damo, and A. Turan, “Engineering risk assessment of photovoltaic-thermal-fuel cell system using classical failure modes, effects and criticality analyses,” Clean. Environ. Syst., vol. 2, January, p. 100021, 2021.

T. Lajnef, S. Abid, and A. Ammous, “Modeling, control, and simulation of a solar hydrogen/fuel cell hybrid energy system for grid-connected applications,” Adv. Power Electron., vol. 2013, 2013.

Q. Tu, J. Mo, R. Betz, L. Cui, Y. Fan, and Y. Liu, “Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate,” Energy Policy, vol. 144, July, p. 111681, 2020.

J. Xue, “Photovoltaic agriculture - New opportunity for photovoltaic applications in China,” Renew. Sustain. Energy Rev., vol. 73, January, pp. 1–9, 2017.

M. Vivar, M. Fuentes, N. Pichel, A. López-Vargas, M. J. Rodrigo, and K. Srithar, “Photovoltaic and solar disinfection technology meeting the needs of water and electricity of a typical household in developing countries: From a Solar Home System to a full-functional hybrid system,” Sci. Total Environ., vol. 747, July, p. 141082, 2020.

M. Panagiotidou, M. C. Brito, K. Hamza, J. J. Jasieniak, and J. Zhou, “Prospects of photovoltaic rooftops , walls and windows at a city to building scale,” Sol. Energy, vol. 230, October, pp. 675–687, 2021.

N. A. Handayani and D. Ariyanti, “Potency of solar energy applications in Indonesia,” Int. J. Renew. Energy Dev., vol. 1, no. 2, pp. 33–38, 2012

H. B. Xie, W. J. Wu, and Y. F. Wang, “Life-time reliability based optimization of bridge maintenance strategy considering LCA and LCC,” J. Clean. Prod., vol. 176, pp. 36–45, 2018.

U. K. M. Pushparenu Bhattacharjee, Vidyut Dey, “Risk assessment by failure mode and effects analysis (FMEA) using an interval number based logistic regression model,” Saf. Sci., vol. 132, 2020.

A. Khaligh and O. C. Onar, Energy harvesting: Solar, wind, and ocean energy conversion systems. 2017.

S. Ghosh and R. Yadav, “Future of photovoltaic technologies: A comprehensive review,” Sustain. Energy Technol. Assessments, vol. 47, June, p. 101410, 2021.

S. Saha et al., “Diagnosis and mitigation of voltage and current sensors malfunctioning in a grid connected PV system,” Int. J. Electr. Power Energy Syst., vol. 115, April 2018, p. 105381, 2020.

B. Ramadhani, “Instalasi Pembangkit Listrik Tenaga Surya,” no. 31 Agustus 2018, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH,Energising Development (EnDev) Indonesia, 2018.

L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Sol. Energy, vol. 188, March, pp. 426–440, 2019.

K. D. Sharma and S. Srivastava, “Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review,” Copyr. J. Adv. Res. Aeronaut. Sp. Sci. J Adv Res Aero SpaceSci, vol. 5, pp. 2454–8669, 2018.

A. Y. Yu, H. C. Liu, L. Zhang, and Y. Chen, “A new data envelopment analysis-based model for failure mode and effect analysis with heterogeneous information,” Comput. Ind. Eng., vol. 157, June 2020.

H. W. Lo, J. J. H. Liou, C. N. Huang, and Y. C. Chuang, “A novel failure mode and effect analysis model for machine tool risk analysis,” Reliab. Eng. Syst. Saf., vol. 183, June, pp. 173–183, 2019.

J.-H. Zhu, Z.-S. Chen, B. Shuai, W. Pedrycz, K.-S. Chin, and L. Martínez, “Failure mode and effect analysis: A three-way decision approach,” Eng. Appl. Artif. Intell., vol. 106, August, p. 104505, 2021.

H. C. Liu, FMEA using uncertainty theories and MCDM methods, February. 2016.

A. Mellit, G. M. Tina, and S. A. Kalogirou, “Fault detection and diagnosis methods for photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 91, February, pp. 1–17, 2018.

M. Köntges et al., Performance and reliability of photovoltaic systems subtask 3.2: Review of failures of photovoltaic modules: IEA PVPS task 13: external final report IEA-PVPS. 2014.

A. Triki-Lahiani, A. Bennani-Ben Abdelghani, and I. Slama-Belkhodja, “Fault detection and monitoring systems for photovoltaic installations: A review,” Renew. Sustain. Energy Rev., vol. 82, July 2017, pp. 2680–2692, 2018.

D. S. Pillai and N. Rajasekar, “A comprehensive review on protection challenges and fault diagnosis in PV systems,” Renew. Sustain. Energy Rev., vol. 91, July 2017, pp. 18–40, 2018.

M. H. Hwang, Y. G. Kim, H. S. Lee, Y. D. Kim, and H. R. Cha, “A study on the improvement of efficiency by detection solar module faults in deteriorated photovoltaic power plants,” Appl. Sci., vol. 11, pp. 1–16, 2021.

H. A. Kazem, M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian, “A review of dust accumulation and cleaning methods for solar photovoltaic systems,” J. Clean. Prod., vol. 276, p. 123187, 2020.

M. Cubukcu and A. Akanalci, “Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey,” Renew. Energy, vol. 147, pp. 1231–1238, 2020.

B. Li, C. Delpha, D. Diallo, and A. Migan-Dubois, “Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review,” Renew. Sustain. Energy Rev., vol. 138, October 2020.

J. A. Dhanraj et al., “An Effective Evaluation on Fault Detection in Solar Panels,” pp. 1–14, 2021.

C. G. Lee et al., “Analysis of electrical and thermal characteristics of PV array under mismatching conditions caused by partial shading and short circuit failure of bypass diodes,” Energy, vol. 218, p. 119480, 2021.

A. Haque, K. V. S. Bharath, M. A. Khan, I. Khan, and Z. A. Jaffery, “Fault diagnosis of Photovoltaic Modules,” Energy Sci. Eng., vol. 7, no. 3, pp. 622–644, 2019.

V. Satya, B. Kurukuru, F. Blaabjerg, M. A. Khan, and A. Haque, “A Novel Fault Classification Approach for Photovoltaic Systems,” 2020.

A. Dhoke, R. Sharma, and T. K. Saha, “PV module degradation analysis and impact on settings of overcurrent protection devices,” Sol. Energy, vol. 160, June 2017, pp. 360–367.

W. Yuan, T. Wang, and D. Diallo, “A Secondary Classification Fault Diagnosis Strategy Based on PCA-SVM for Cascaded Photovoltaic Grid-connected Inverter,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 5986–5991, 2019.